3 research outputs found

    Fault-Tolerance and Deaggregation Security of Aggregate Signatures

    Get PDF
    Ein zentrales Problem der digitalen Kommunikation ist die Absicherung der Authentizität und Integrität digitaler Dokumente, wie etwa Webseiten, E-Mails oder Programmen. So soll beispielsweise für den Empfänger einer E-Mail nachvollziehbar sein, dass die empfangene E-Mail tatsächlich vom angegebenen Absender stammt (Authentizität) und nicht durch Dritte verändert wurde (Integrität). Digitale Signaturen sind ein Hauptwerkzeug der Kryptographie und IT-Sicherheit, um diese Eigenschaften zu gewährleisten. Hierzu wird vom Absender ein geheimer Schlüssel verwendet, um für das zu sichernde Dokument eine Signatur zu erstellen, die mithilfe eines öffentlich bekannten Verifikationsschlüssels jederzeit überprüft werden kann. Die Sicherheitseigenschaften solcher digitaler Signaturverfahren garantieren sowohl, dass jede Änderung am Dokument dazu führt, dass diese Überprüfung fehlschlägt, als auch dass eine Fälschung einer Signatur praktisch unmöglich ist, d.h. ohne den geheimen Schlüssel kann keine gültige Signatur berechnet werden. Somit kann bei einer erfolgreichen Verifikation davon ausgegangen werden, dass das Dokument tatsächlich vom angegebenen Absender erstellt und seit der Berechnung der Signatur nicht verändert wurde, da nur der Absender über den geheimen Schlüssel verfügt. Aggregierbare Signaturen bieten zusätzlich die Möglichkeit Signaturen mehrerer Dokumente zu einer einzigen Signatur zusammenzuführen bzw. zu aggregieren. Diese Aggregation ist dabei jederzeit möglich. Eine aggregierte Signatur bezeugt weiterhin sicher die Integrität und Authentizität aller ursprünglichen Dokumente, benötigt dabei aber nur so viel Speicherplatz wie eine einzelne Signatur. Außerdem ist die Verifikation einer solchen aggregierten Signatur üblichrweise schneller möglich als die sukzessive Überprüfung aller Einzelsignaturen. Somit kann die Verwendung eines aggregierbaren Signaturverfahrens anstelle eines gewöhnlichen Verfahrens zu erheblichen Verbesserungen der Performanz und des Speicherverbrauchs bei Anwendungen von Signaturen führen. In dieser Dissertation werden zwei zusätzliche Eigenschaften von aggregierbaren Signaturverfahren namens Fehlertoleranz und Deaggregationssicherheit untersucht. Fehlertoleranz bietet eine Absicherung des Verfahrens gegen fehlerhafte Signier- und Aggregationsvorgänge und Deaggregationssicherheit schützt vor ungewollten Löschungen. Beide Eigenschaften werden im Folgenden erläutert. Fehlertoleranz: Durch System- und Programmfehler, sowie inkorrektes oder auch bösartiges Nutzerverhalten ist es möglich, dass fehlerhafte Einzelsignaturen zu einer bestehenden aggregierten Signatur hinzugefügt werden. Alle bisherige aggregierbaren Signaturverfahren haben jedoch den Nachteil, dass bereits das Aggregieren einer einzigen fehlerhaften Einzelsignatur dazu führt, dass auch die aggregierte Signatur fehlerhaft und somit unbrauchbar wird. Die aggregierte Signatur kann danach nicht mehr korrekt verifiziert werden. Insbesondere kann aus ihr nun keinerlei Aussage mehr über die Integrität und Authentizität der Dokumente abgeleitet werden, die vor dem Hinzufügen der fehlerhaften Einzelsignatur korrekt signiert wurden. Dies hat zur Folge, dass alle gegebenen Sicherheitsgarantien verloren gehen und es wird ein aufwändiges Neusignieren aller Dokumente notwendig, welches unter Umständen und je nach Anwendung nur schwer bis überhaupt nicht möglich ist. In dieser Dissertation wird das erste fehlertolerante aggregierbare Signaturverfahren vorgestellt, bei dem das Hinzufügen einzelner falscher Signaturen bis zu einer gewissen Grenze keine schädlichen Auswirkungen hat. Eine aggregierte Signatur wird erst dann ungültig und unbrauchbar, sobald die Anzahl hinzugefügter fehlerhafter Signaturen diese Grenze überschreitet und behält davor weiterhin seine Gültigkeit für die korrekt signierten Dokumente. Dazu wird ein Verfahren vorgestellt, mit dem jedes beliebige aggregierbare Signaturverfahren in ein fehlertolerantes Verfahren transformiert werden kann. Das zugrundeliegende Verfahren wird dabei nur als Black-Box verwendet und der Schutz gegen Fälschungsangriffe übertragt sich beweisbar und ohne Einschränkung auf das neue fehlertolerante Verfahren. Des Weiteren wird als Anwendung von fehlertoleranten Verfahren gezeigt, wie aus ihnen ein sicheres Log-Verfahren konstruiert werden kann. Deaggregationssicherheit: Erlangt ein Angreifer Zugriff auf eine aggregierte Signatur für einen bestimmten Datensatz, so sollte es ihm nicht möglich sein aus diesem Aggregat eine gültige Signatur für einen Teil der geschützten Dokumente abzuleiten, indem er einzelne Signaturen entfernt oder deaggregiert. Solche Angriffe können für viele Anwendungsfälle problematisch sein, da so Signaturen für Mengen von Dokumenten berechnet werden könnten, die nicht von den eigentlichen Erstellern beabsichtigt waren und nie von ihnen selbst signiert wurden. Wird ein aggregierbares Signaturverfahren etwa verwendet um eine Datenbank abzusichern, so sollte es Angreifern nicht möglich sein einzelne Einträge daraus zu entfernen. In dieser Dissertation werden mehrere Deaggregationssicherheitsbegriffe entwickelt, vorgestellt und untersucht. Dazu wird eine Hierarchie von verschieden starken Sicherheitsbegriffen entwickelt und die Zusammenhänge zwischen den einzelnen Begriffen werden formal untersucht. Dabei wird auch gezeigt, dass der von aggregierbaren Signaturverfahren garantierte Schutz gegen Fälschungen keinerlei Sicherheit gegen Deaggregationsangriffe gewährleistet. Des Weiteren wird die Deaggregationssicherheit einer Reihe von bekannten und wichtigen aggregierbaren Signaturverfahren näher betrachtet. Die von diesen Verfahren gebotene Sicherheit wird exakt klassifiziert, indem entweder Angriffsmöglichkeiten demonstriert werden oder formal bewiesen wird, welcher Sicherheitsbegriff der Hierarchie vom Verfahren erfüllt wird. Außerdem wird die Verbindung von Fehlertoleranz und Deaggregationssicherheit untersucht. Dabei stellt sich heraus, dass beide Begriffe nicht zueinander kompatibel sind, indem bewiesen wird, dass fehlertolerante aggregierbare Signaturverfahren keinerlei Sicherheit gegen Deaggregationsangriffe bieten können. Somit muss bei Anwendungen von aggregierbaren Verfahren genau abgewogen werden, welche der beiden Eigenschaften notwendig ist und ob zusätzliche Sicherheitsmaßnahmen angewendet werden müssen, um dieses Problem für die konkrete Anwendung zu beheben

    Fault-Tolerant Aggregate Signatures

    Get PDF
    Aggregate signature schemes allow for the creation of a short aggregate of multiple signatures. This feature leads to significant reductions of bandwidth and storage space in sensor networks, secure routing protocols, certificate chains, software authentication, and secure logging mechanisms. Unfortunately, in all prior schemes, adding a single invalid signature to a valid aggregate renders the whole aggregate invalid. Verifying such an invalid aggregate provides no information on the validity of any individual signature. Hence, adding a single faulty signature destroys the proof of integrity and authenticity for a possibly large amount of data. This is largely impractical in a range of scenarios, e.g. secure logging, where a single tampered log entry would render the aggregate signature of all log entries invalid. In this paper, we introduce the notion of fault-tolerant aggregate signature schemes. In such a scheme, the verification algorithm is able to determine the subset of all messages belonging to an aggregate that were signed correctly, provided that the number of aggregated faulty signatures does not exceed a certain bound. We give a generic construction of fault-tolerant aggregate signatures from ordinary aggregate signatures based on cover-free families. A signature in our scheme is a small vector of aggregated signatures of the underlying scheme. Our scheme is bounded, i.e. the number of signatures that can be aggregated into one signature must be fixed in advance. However the length of an aggregate signature is logarithmic in this number. We also present an unbounded construction, where the size of the aggregate signature grows linearly in the number of aggregated messages, but the factor in this linear function can be made arbitrarily small. The additional information encoded in our signatures can also be used to speed up verification (compared to ordinary aggregate signatures) in cases where one is only interested in verifying the validity of a single message in an aggregate, a feature beyond fault-tolerance that might be of independent interest. For concreteness, we give an instantiation using a suitable cover-free family

    Practical and Robust Secure Logging from Fault-Tolerant Sequential Aggregate Signatures

    Get PDF
    Keeping correct and informative log files is crucial for system maintenance, security and forensics. Cryptographic logging schemes offer integrity checks that protect a log file even in the case where an attacker has broken into the system. A relatively recent feature of these schemes is resistance against truncations, i.e. the deletion and/or replacement of the end of the log file. This is especially relevant as system intruders are typically interested in manipulating the later log entries that point towards their attack. However, there are not many schemes that are resistant against truncating the log file. Those that are have at least one of the following disadvantages: They are memory intensive (they store at least one signature per log entry), or fragile (i.e. a single error in the log renders the signature invalid and useless in determining where the error occurred). We obtain a publicly-verifiable secure logging scheme that is simultaneously robust, space-efficient and truncation secure with provable security under simple assumptions. Our generic construction uses forward-secure signatures, in a plain and a sequential aggregate variant, where the latter is additionally fault-tolerant, as recently formalized by Hartung et al. (PKC 2016). Fault-tolerant schemes can cope with a number of manipulated log entries (bounded a priori) and offer strong robustness guarantees while still retaining space efficiency. Our implementation and the accompanying performance measurements confirm the practicality of our scheme
    corecore